Object Oriented Terminology and History


Object Technology (OT) was defined in 1969 by Dr. Kristin Nygaard of Norway, who was trying to model a Norwegian fjord (a long narrow arm of the sea bordered by steep cliffs) and the movement of ships passing through it. Computer programs prior to 1969 and many today separate data from the procedures. This type of program did not make sense for Dr. Nygaard’s application. That is, how could the boat float above the water? It cannot; it must remain in the water for the simulation to work. Therefore, Dr. Nygaard decided to model each component (data and procedure) as a single unit and then model the relationships between these elements.

Object Oriented Technology (OT) basic concepts:

1. Objects and classes

2. Operations or Methods

3. Requests or Messages

4. Attributes

5. Inheritance

6. Encapsulation


An object is anything, real or abstract, about which we store data and those operations that manipulate the data. Examples of objects are an invoice, an organization, a screen with which a user interacts, an engineering drawing, a component on an engineering drawing, an airplane, an airline reservation, an airline flight, an order-filling process, and so on. An object may be composed of other objects, which may also contain other objects. Dr. Nygaard’s objects were mathematical models of boats and other physical aspects of the fjord being analyzed.


An operation is an activity that reads or manipulates data of an object. Examples are calculating a total, checking a balance, creating, accessing, or releasing. Dr. Nygaard’s operations were boats float, sink, move, and so on.


Attributes or characteristics add detail to the object. They describe values kept within an object that may be manipulated by services of that object. For example, name, address, and title are attributes. Dr. Nygaard’s attributes included color and hardness.


Encapsulation is the process of hiding the implementation details of an object from its user - making them transparent. (Transparent means that something appears not to exist when in fact it really does.) That is, the data and operations are packaged together. This is also called information hiding. Users know what operations may be requested of an object, but do not how the specifics of how the operation are performed. The object is like a black box to the user. Encapsulation allows an object to be modified without requiring the applications that use them to be modified also. Encapsulation keeps related content together and minimizes traffic between different parts of the work.


To make an object do something, we send it a message, which in turn causes an operation to be invoked. Sometimes, the operation returns a response.


An object can be decomposed into other objects, called a generalization hierarchy. For example, the object called Person may be broken down into Student or Employee. In this example, Person is called a supertype and Student and Employee are called subtypes. Student may have subtypes of Freshman, Sophomore, Junior, and Senior. Freshman may be further broken into first or second semester Freshman, and so on. The concept of inheritance implies that each subclass or subtype of an object inherits the properties of its parent class. Inheritance allows a developer to specify common attributes once.

OO Analysis and Design (OOAD or OAD)


Three Activities

1. Find Classes and Objects 

2. Define Attributes 

3. Define Services


In OOA, an object type or class is a category of an object that has similar characteristics and behavior, like EMPLOYEE or STUDENT. It is a singular noun or an adjective and noun. An object instance is an example of an object type, like a specific employee or student name. An object instance is sometimes called an object. This represents the OO paradigm. The term object has different roles and meanings in OOT. 


In OOA, an operation is called a service.

OO Programming (OOP)


Objects can send and receive messages. Over its lifetime, the object has a state that varies.


In OOP, an operation is called a method.


In OOP, a message is called a request or an event. The event contains the name of the object, the name of the operation, and maybe a group of parameters. As a result of receiving an event (message), the object runs a script (program) that may modify its state or send messages to other objects.


In OOP, object classes take on a variety of names, from module, to package, to class. OO software modules are based on object types. The software representation of the object is a collection of data types and methods with which the data is manipulated.


Polymorphism allows an instruction to be given to an object in the form of a generalized, rather than specific, detailed command. While the specific actions (which are internal to the object) would be different, the results would all be the same.


An example -- a VCR is an object; Sony VCR is an object type; the Sony VCR in my living room is an object instance; VCR’s have the same basic operations - like playback, record, setting timer, audio dubbing, etc.; and contain complex components that you don’t need to concern yourself with - it just works (encapsulation). You (the sender object) can send requests to your VCR through a remote control device. The VCR responds by taking an action and maybe displaying responses on the TV and/or VCR display.

Some benefits of OOT

· reusability - classes are designed so they can be reused in many systems or create modified classes using inheritance 

· stability - classes designed for repeated reuse become stable over time 

· easier design - designer looks at objects as a black box, not concerned with the detail inside 

· faster design - applications are created from existing components

